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Introduction

A group T with a given system of generators {7; },.; carries a unique mazimal
left invariant distance function for which

dist(y;,id) = dist(y;!,id) = 1, 1€ 1.

This distance function, called the word metric associated to the generating
set {7} C T, makes I' a subject to a geometric scrutiny as any other metric
space.

This space may appear boring and uneventful to a geometer’s eye since it is
discrete and the traditional local (e.g. topological and infinitesimal) machin-
ery does not run in I. To regain the geometric perspective one has to change
one’s position and move the observation point far away from I'. Then the
metric in T seen from the distance d becomes the original distance divided by
d and for d — oo the points in I' coalesce into a connected continuous solid
unity which occupies the visual horizon without any gaps or holes and fills
our geometer’s heart with joy. For example, an Abelian group I" with a finite
generating set {7;} and the corresponding family of metric, disty; /d, d > 0,
turns in the limit for d — oo into a real linear space L of dimension n = rank I
with a Minkowski metric (also called a Banach norm) whose unit ball around
the origin is a convex centrally symmetric polyhedron in L.

Instead of passing to the limit of metric spaces,
dlim (T, dist /d),

(technically speaking, one appeals here to the topology in the set of “all”
metric spaces coming along with the Hausdorff metric; if the ordinary limit
does not exist, one resorts to ultralimits, see 2.A), one may remain in the
original metric space (I', dist(,,;) and concentrate on the asymptotic proper-
ties of I which are expressed in terms of distances between variable points in
I’ as these distances — oo.

0.1. Example: the growth function. Let I' be a discrete metric space
and consider the concentric balls of radii d around a chosen point vy € T,

B(d) = {y € T'| dist(y,7) < d}.
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To make the discussion meaningful, we assume that the balls B{(d) are finite
(subsets) for all d (which is obviously the case for the word metrics of finitely
generated groups) and then we have the growth function of T' that is

N(d) = card B(d).

For small values of d the function N(d) strongly depends on 4o and it is
oversensitive to perturbations of the metric in I".  On the other hand, the
behaviour of N(d) for large d — oo is essentially independent of v, (under
mild assumptions on ' which are satisfied in all examples we are concerned
with in this article) and this behaviour is also rather stable under reasonable
changes of the metric.

0.1.A. Subexample: growth of an Abelian group. Let I" be an Abelian
group with the word metric corresponding to a finite generating set. Then
(this is almost obvious) N(d) has polynomial growth of degree n = rankT,
i.e.

where A; and A; are some positive constants depending on the chosen system
of generators. It is also not hard to show that there exists a limit

A= dlim d " N(d), (%%)

which is an improvement over the above inequality (%) for large d. (In fact,
the convergence in (%) is quite fast, A — d ™ N(d) = O(d""!), and it is
known to some people in certain quarters when N(d) is actually an honest

polynomial in d, compare [Ehr], [Bens], [McM], [Ka-Kho].

0.2. Large-scale equivalence relations between metric spaces. Our
“asymptotic” attitude obliges every such equivalence relation to be strong
enough to make every bounded space X equivalent to a single point (or, at
least to an arbitrarily small space). Recall that a metric space X is called
bounded if

Diam X = sup dist(zy,z2) < oco.

el z1,72

Here is the weakest relation of this sort used in geometry:

0.2.A. Hausdorff equivalence between metric spaces. Write

X ~ Y,
Hau

where X and Y are metric spaces, if there exists a metric on the disjoint
union Z of X and Y, such that distz on X equals the original metric distx
on X and similarly distz |Y = disty, such that the distance functions

§(z) = distz(z,Y) = ;2}1; distz(z,y)
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and

8(y) = distz(y, X)

are bounded, i.e.

sup 6(z) < oo and sup 6(y) < oo.
r€X yeY

Recall that the maximum of the above two suprema is called the Hausdorff
distance (between subsets X and Y in Z) and the infimum of these distances
over all metrics on Z which restrict to disty on X C Z and disty on Y C Z
is called the (abstract) Hausdorff distance between metric spaces X and Y.
Thus the relation X o Y expresses the finiteness of distga, (X,Y). (Our
discussion on the limit of spaces at the beginning of this introduction refers to
the convergence of unbounded spaces, X; — X, ¢ =1, 2, ..., with respect to
the Hausdorff distance between appropriately chosen bounded subsets B; C X;
and B! C X. Then the Hausdorfl convergence X; — X, does not preclude
the infinite Hausdorff distance between X and every X;, t =1, 2,...,. This
is similar to the uniform convergence of functions on bounded or compact
subsets of a fixed infinite space, such as R*, for instance.)

0.2.A;. Ezample. Let T be a free Abelian group of rank n and {v1,...,7}
be a (free) system of generators. Then I' with the corresponding word metric

is o to the n-dimensional Euclidean space R™ with the so-called #;-metric

n

dist(z,y) = 3 |z — wil.

i=1

In fact, the homomorphism I' — R” extending
~ (1,0,...,0), 2 — (0,1,0,...,0), ...,

is an isometry and every point of R™ lies at most distance one from the image

of T'.

0.2.A;. Long-range connectedness. Here is the simplest instance of
redefining a standard topological notion in the large-scale terms. A metric
space X is called long-range (or large-scale)connected if there exists a constant
d > 0 such that every two points z and y in X can be joined by a finite chain
of points

Lo =T, T1, T2y ---sTn =Y,

such that
dist(z;,2i-1) <d, t=1,...,n.
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It is clear, that the long range connectedness in invariant under ol In fact,

au

X is Lr. connected if and only if it is ~ to a path connected space. (Idea
of the proof: add to X the edges between all pairs of points with mutual
distances < d and extend the metric from X to the resulting space Xy O X
of paths.

Ezample. If X = (T, word metric) then X; equals the Cayley graph of I'
which, as we know, is always connected.)

0.2.A}. L.r. connectedness at oo. The idea of L.r. connectedness becomes
interesting in the group theoretic context when it applies not to a group T
directly, but to some auxiliary space or a sequence of spaces. An instance of
that is I.r. connectedness at infinity defined as follows.

A metric space X is called l.r. disconnected at infinity if for every d > 0 there
exist two subsets X; and X, in X such that

(i) dist(Xy, X2) > d which means by the definition of this dist between
subsets that

dist(zy,7;) >d forall z,€ X;, and =z;€ X,.

(i1) Xi and X, cover almost all X, i.e. the complement X — (X; U X3) is
bounded.

Then X is called Lr. connected at oo if for some d the above X;, X; do not
exist.

Similarly, using k different X; instead of two, one defines the number of
Lr. connected components at oo which agrees with the usual notion of the
ends of groups.

A remark relevant to our discussion is the invariance of the number of ends
(i.e. L.r. components at oo) under the Hausdorff equivalence.

0.2.B. Terminology: “asymptotic”, “long-range”, “large-scale”.
These expressions are used interchangeably and the choice of a particular one
depends on what kind of associations we want to carry along with a formal
argument. Thus “asymptotic” awakens an analyst in our minds, “large scale”
shifts the discussion into a more geometric vein and “long range” appeals to
whatever is left in us of a physicist.

0.2.C. Lipschitz equivalence and quasi-isometry. Two metrics on the
same space, say dist; and dist,, are called {Lipschitz) equivalent if the ratios
dist; / dist, and dist, / dist; are bounded when they are considered as functions



Introduction 5

on the Cartesian square of the space minus the diagonal. Then two different
metric spaces X; and X, are called (bi-)Lipschitz equivalent if there exists a
bijection X; — X, which brings the metric from X; to a metric on X, which
is equivalent to the original metric on Xj.

Ezample. If dist; and dist, are word metrics on I' corresponding to two finite

generating sets then they are (obviously) equivalent. Consequently, isomor-

phic finitely generated groups are o (this is an abbreviation of “Lipschitz
ip

equivalent”) for their respective word metrics.

Remark. One can alternatively define the Lipschitz equivalence as an iso-
morphism in the category of metric spaces and Lipschitz map where a map
f: X7 — X; is called Lipschitz if there exists a (Lipschitz) constant A > 0,
such that

dist(f(z), f(y)) < A dist (z,y) for all z, y € X;.

Notice, that every homomorphism between finitely generated groups is Lip-
schitz.

Now we use both relation o and o and generate with them what is called
au ip

the quasi-isometry equivalence between metric spaces X and Y. In fact, X
and Y are quasi-isometric if and only if there exist X’ and Y’, such that

X ~X' ~Y ~ Y.
Hau Lip Hau

0.2.C;. Basic ezxample. Let X be a Riemannian manifold and let T be a
finitely generated group properly and isometrically acting on X. (An action of
a discrete group is proper if for every compact subset B C X the intersection
BN~(B) is empty for almost all, i.e. for all but finitely many v € I'.) Next, a
proper action is called cocompact if the quotient space X/T' is compact. This
is equivalent (for the proper actions) to the existence of a compact subset
B C X whose I'-translates cover all of X, i.e. TB = X.

The following obvious proposition-example constitutes the major link between
the asymptotic group theory and the large-scale Riemannian geometry.

If the action of T on X is proper and cocompact then I' is quasi-isometric to

X.

(Here and in future, I' is given the word metric associated to some finite
generating set.)

Corollary. There ezist quasi-isometric groups Iy and T'y which are not com-
mensurable. (Recall that Iy and T’y are commensurable if there exist sub-
groups of finite index, I} C Ty and T}, C T’y such that T is isomorphic to
I3.)
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For example, the product of two hyperbolic planes, X = H? x H?, admits an
irreducible cocompact proper action of a discrete group I', where “irreducible”
means that the induced action of I' (or rather of the subgroup I C T of
index < 2 which does not interchange the Cartesian components of H? x H?)
on each H? is non-proper. Such a I is quasi-isometric to the product I'; x I’y
of two surface groups (as I'y x I'; obviously acts on H?> x HZ?) but one can
easily show that I' is not commensurable to I'; x I';. (The only truly non-
trivial point in the above discussion is the existence of an irreducible I'. This
is constructed by arithmetic means, see [Gr-Pa] for an elementary discussion
on the matter.)

0.2.C;. Let us indicate a non-Riemannian version of the above example.
Take an arbitrary locally compact group G and consider two discrete sub-
groups I'y and I'; in G. Then, if T'; and 'y are finitely generated and cocom-
pact in G then they are quasi-isometric. Instead of giving a proof (which is
trivial anyway) we indicate a further generalization which is motivated by the
following features of our picture

(i) The left action of I'; on G commutes with the right action of T'y;
(ii) both actions are cocompact on G.

Now we state the following

0.2.C;. Topological criterion for quasi-isometry. Two finitely generated
groups I'y and I'y are quasi-isometric if and only if there exist proper actions
of I'y and T'; on some locally compact topological space X such that

(i) the actions commute;
(ii) both actions are cocompact.

Idea of the proof. We only indicate here how to produce an X starting from
a quasi-isometry between I'; and T';. To simplify the matter we assume a
Lipschitz equivalence rather than a quasi-isometry which is given by a bi-
Lipschitz bijection f : Ty — I';. Then we consider the space F of all maps
I't — T, with the pointwise convergence (topologically, this is a countable
union of Cantor sets) and observe that the natural actions of I'; and I', on F
are proper and they commute. Then we take the closure X of the (I'; x I'y)-
orbit of our f € F and leave it to the reader to check that the actions of I
and I'; on X are co-compact.

0.2.D. Why Lipschitz? Let us try to relax further our equivalences. Say
that two metrics dist; and dist; on X are uniformly equivalent on the large-
scale (or ls.u. equivalent) if there exists a real function A(d), d > 0, such
that

dist;(z,y) < A(disty (z,y)) for all zandy in X
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and conversely,
disty < A(disty).

Then one defines the lLs.u. equivalence between metric spaces X and Y by
mixing the above with the Hausdorff equivalence. This may appear signifi-
cantly more general than quasi-isometry but it is not quite so because of the
following trivial

Lemma. If the spaces X and Y are quasi-geodesic (see the definition below)
then Ls.u. equivalence between X and Y is the same thing as quasi-isometry.

Definition. A metric space X is called quasi-geodesic if there exist positive
constants d and )\, such that for every two points z and y in X there exists
a finite chain of points in X,

Lo =T, T2y---5Tn =Y,
such that
dist (z;,25-1) < d, i=1,...,n, (%)
and n
> dist (2, zi-1) < A dist (2,y). (%)

i=1

Ezamples. (a) Every group I' with a word metric is (obviously) quasi-geodesic.
In fact it is almost geodesic as one can satisfy (*) and (}) with d = 1 and
X = 1. (For truly geodesic one asks for an arbitrarily small d > 0 in (*).)

(b) Let X be a connected Riemannian manifold. Then it is quasi-geodesic
almost by definition as dist(z,y) appears as the infimum of the lengths of
paths in X between z and y. If X is complete as a metric space, then X is truly
geodesic as the above infimum is actually achieved by some curve between
zandy. (Notice, that this does not exclude manifolds with boundaries which
are metrically complete but are not complete in a certain more technical
sense.)

(c) Let T’y C T'; be a finitely generated subgroup in a finitely generated group
. Then the word metric dist; restricted to I'; is not, in general, quasi-
geodesic in I';. The simplest instance of that is seen in the nilpotent group
T, = (a, b, ¢ | [a,b] = ¢, [a,c] = [b,¢] = 1) for 'y = Z generated by the
(central) element c. Here one immediately sees that the commutator {a®, b"]
lies in ['; and is equal to ¢®. Thus dist, Ty i (distl)%, and so dist; and

disty are uniformly equivalent on I'; but by no means Lipschitz equivalent.

0.3. From groups to spaces. Take a finitely generated group I' and let dist
be a word metric. Now we try to forget the structure of the group in I' and



8 Asymptotic Invariants of Infinite Groups

look on (T, dist) as on a metric space. (Forgetting the structure is not quite
complete at this stage as I appears as a subgroup in the full isometry group
Iso (T, dist); moreover, I' = Iso(T, dist) in most cases.) Furthermore, as we
are interested in the large-scale geometry of (I', dist) we want our analysis
of T to be stable under quasi-isometrics. In other words our (geo)metric
invariants should remain unchanged if we pass to a metric space (I, dist’)
quasi-isometric to (I', dist). Now it is not at all easy to recognize I' by looking
at I, yet a variety of characteristics of I' can be reconstructed in terms of I''!
These are precisely the asymptotic (or large scale) invariants we are after. In
fact, there are certain cases (e.g. I' = Z™) where one can recapture the group
[ itself up to commensurability.

Given a discrete metric space I'y one can make it more palatable by adding
some meat to I' in the form of edges and higher dimensional simplices with
vertices in I', without changing the quasi-isometry type. For example, if T’
is finitely presented, then there is a finite 2-dimensional polyhedron P with
71(P) = T and the universal covering P gives us a nice tasty thickening
of T as P is connected and simply connected. There is not, in general, any
distinguished metric on P quasi-isometric to T', but there is a reasonable class
of such metrics which are invariant under the deck transformation group I'. A
geometrically oriented reader may prefer another version of this construction
where instead of P one takes a compact Riemannian manifold V (possibly
with a boundary) having the fundamental group 71(V) =T and then passes
to the universal cover V with the induced Riemannian metric. This is a
geodesic metric space which is connected and simply connected and where I’
acts properly and cocompactly. So again Vis quasi-isometric to I'. Thus the
large-scale (or asymptotic) geometry of a finitely presented group embeds into
a more general theory, that is the quasi-isometric geometry of non-compact
Riemannian manifolds with no group acting anywhere.

Here one may start to feel rather uncomfortable by realizing how much struc-
ture has been lost as one passed from I' to the quasi-isometry class of (T,
word metric). Indeed one barters here a rigid crystalline beauty of a group
for a soft and flabby chunk of geometry where all measurements have built-in
errors. But something amazing and unexpected happens here as was discov-
ered by Mostow in 1968: the quasi-isometric (or large-scale) geometry turns
out by far more rich and powerful than appears at first sight. In fact, one
believes nowadays that most essential invariants of an infinite group I' are
quasi-isometry invariant. Well, even so, why should we go through all the
pains of reconstructing the group structure from geometry if nobody forces
us to leave the pure group theoretic world in the first place? Here are several
reasons to do so.

I. The group theoretic structure appears too rigid and limits one to formal
combinatorial and algebraic manipulations with no room for transcendental
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methods (i.e. the analysis of infinity). This is similar to the elementary theory
of metric spaces where the only admissible maps are isometries. It is fruitful to
include into the category more morphisms, such as Lipschitz maps, continuous
maps, measurable maps etc., thus bringing analysis into play.

I1. Even in purely group theoretic questions the geometric language may
tremendously clarify the picture. For example, from a geometer’s (even a
topologist’s) viewpoint the free subgroup theorem (“a subgroup of a free group
is free”) appears as a painful way of expressing (in a special case) the obvious
feature of covering maps ¥ — Y,

dmY=1 = dm¥V=1

(If you have ever tried and failed to drag yourself through the notational
rigours of an algebraic proof you must share my relief at the realization that
the difficulty there stemmed not from mathematics but from a non-adequate
language. I still feel thankful to Dima Kazhdan who explained the matter
to me many years ago.) Similar linguistic aberrations can be observed (at
least by a geometer) in all corners of the traditional geometric group theory,
such as the theory of free products (with and without amalgamations), small
cancellation theory etc. (The adherence to the combinatorial language comes
from an instinctive mistrust most algebraists feel toward geometry which they
regard as “non-rigorous”.)

V. Ezample: Hyper-Euclidean groups. Here is an instance of a useful
notion which naturally pops up in the geometric setting and which would
become a major nuisance once one committed oneself to a purely algebraic
language.

Definition. A group T is called hyper-Fuclidean in dimension n if it admits
a proper isometric action on a connected oriented n-dimensional Riemannian
manifold X without boundary which admits a proper Lipschitzmap f: X —
R™ of degree one. It is sometimes desirable to vary this definition

(a) by requesting the action to be cocompact,

(b) by allowing the action to be quasi-isometric,

(c) by admitting maps f of degree > 1,

(d) by insisting that X should be contractible.

(The hyper-Euclidean conception appears in geometry and topology in the
study of positive scalar curvature, see [Gr-Law] and the Novikov higher sig-
nature conjecture, see [Fa-Hs] and [C-G-M].)

III. The geometric language brings along a variety of concepts, construc-
tions and ideas unimaginable in the world of pure algebra (such as the above
“hyper-Euclidean”). Thus, geometry suggests an impressive number of po-
tentially useful asymptotic invariants of groups about which one may ask the
following standard questions,
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(A) When and how can one compute such an invariant for a given group?
E.g. how to decide if a given group is hyper-Euclidean.
g g g

(B) What are the relations between different invariants?

(C) Which values of an invariant can be realized by some group I'? (E.g.
when does a given function f(d) appear as the growth function of some
finitely generated group I'? Compare 0.1.)

(D) How large is the class of groups with a given value of an invariant?
(E.g. is every group (of finite cohomological dimension) hyper-Euclidean
in dimension n for a given n?)

IV. When we go from groups to spaces we mentally change the class of es-
sential examples. The most important manifolds studied by geometers are
symmetric and locally symmetric spaces (of finite and infinite dimension)
and other homogeneous spaces. Besides being remarkably attractive objects
in their own right these spaces may serve as measuring rods for the study
of more general spaces and groups. A typical instance of that is the above
definition of “hyper-Euclidean” where a general manifold is compared in a
certain way with R™.

V. The last but not the least argument in favour of geometry is applicability
of geometric ideas (and very rarely of techniques) to the solution of some
group theoretic problems. Unfortunately, this is an exception rather than the
rule but the situation will probably change with the development of the field.

(I do not know how convincing the above evidence truly is. After all, the
actual reason why one approaches a problem from a geometric angle is because
one’s mind is bent this way. No amount of rationalization can conceal the
truth.)

0.4. About this paper. Our purpose here is to demonstrate the efficiency
of the geometric language for defining invariants and isolating interesting
properties of groups. In many cases we just specialize the standard notions of
the asymptotic geometry to groups in order to make them known to the group
theorists. We do not attempt a serious study of our invariants and leave the
standard questions wide open. On some occasions we treat simple examples
lying immediately on the surface. Often we speculate on the possible outcome
of the game only not to lose reader’s attention, even when we have no inkling
of a viable approach to the solution. Thus the readers of this paper should
not expect new theorems (not even half proved ones), but they may come
across some amusing problems.

Remarks on the language. We develop many of our notions in the geo-
metrically friendly surroundings of Riemannian manifolds and similar spaces.
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This immediately applies to groups in so far as the quasi-isometry invariance
of the concepts in question is insured. Namely, in order to attribute some
geometric property Pr to a group T, we just require Pr for some (and thus
every) manifold X quasi-isometric to I', where, in addition, we may impose
some specific condition on X (e.g. being simply connected, contractible etc)
if this is needed for the introduction of Pr. On the other hand if we do
not want to bother with the quasi-isometry invariance we have to make our
choice: either we insist Pr is satisfied for all X (with some specified condi-
tions) quasi-isometric to I' (sometimes we must insist on a proper isometric
action of I on X) or we only require the existence of some X quasi-isometric
to I' which has Pr. Of course, when a quasi-isometry invariance of some
property is unknown it adds a problem to our list.

0.5. Random historical remarks. The first distinctively asymptotic ideas
in geometric group theory appeared in the mid-fifties in the papers by Efre-
movic [Ef], Folner [Fo] and Svarc [Sv]. Folner gave a geometric criterion for
amenability of a finitely generated group I'. The notion of amenability comes
from ergodic theory where a group I' (which may be infinitely generated) is
called amenable if every continuous action of ' on a compact space has an
invariant measure.

0.5.A. Folner Criterion. T is amenable if and only if there exists an ex-
haustion of I by finite (Folner) subsets Fy C F; C ... C F; C ...T, such that
for every d > 0 the d-boundary 04 F; (defined below) of F; has asymptotically
a smaller number of elements than Fj,

limsup card(04F;)/card F; =0

i—00.

0.5.A,. Definition. The d-boundary of a subset F in a metric space I' consists
of the points € F whose distance to the complement I - F' does not exceed
d. (An alternative definition which is as good for the present purpose is where
04T consists of the points in I' — F within distance < d from F.)

0.5.A. Ezample. Folner’s criterion immediately shows that every finitely
generated Abelian group is amenable. On the other hand the standard exam-
ple of a non-amenable group is the free group F; on two generators. Some peo-
ple naively believed for some time that every finitely generated non-amenable
group should contain a copy of F; but to day there are counterexamples which
are infinitely presented (see [Ols]). One still has no construction of a finitely
presented non-amenable group containing no Fs.

It is useful to reformulate the Folner criterion with the emphasis on non-
amenability.
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0.5.A,. Isoperimetric form of Folner criterion. A group I' is non-
amenable if and only if there exist positive constants d and C, such that
every finite subset F' C I satisfies

card F < C card 0z F (*)

This inequality immediately brings to one’s mind the classical linear isoperi-
metric inequality for bounded domains  in the hyperbolic space H",

Vol,, §? < const Vol,_; 9. )

In fact, the similarity between () and (%) can be made precise as these
inequalities are equivalent for quasi-isometric spaces satisfying the following
bounded geometry conditions.

0.5.A;. Definitions.

(a) A discrete metric space I' is said to be uniformly quasi-locally bounded
(u.q.-Lb.) if there exists a function N(d), d > 0, such that every ball B C T
of radius d has

card B < N(d).

(b) A Riemannian manifold X has locally bounded geometry (1.b.g.) if there
exist positive constants € and A such that every e-ball in X is A-bi-Lipschitz
equivalent to the e-ball By C R™. (This means the existence of a bi-Lipschitz
map B — B, with the implied constant A, compare 0.2.C.)

0.5.A,. Ezample. Every finitely generated group I' is u.q.-l.b. Every Rie-
mannian manifold X without boundary whose full isometry group is cocom-
pact on X has Lb.g. (If X has a boundary the definition needs a minor
adjustment.)

0.5.A5. Proposition. LetT be a discrete u.q.-L.b. space and X a Riemannian
manifold having 1.b.g. If X is quasi-isometric to T then the inequality (x) for
T (i.e. for all finite subsets F C T') implies (%) for X (i.e. for all bounded
domains Q C X ) where the constant in (%) depends on C in (x) as well as
on the implied quasi-isometry. Conversely, (%) for X implies (x) for T.

The proof appears obvious to a geometrically oriented mind and nowadays
even the hard core group theorists are beginning to agree with this view.

0.5.A4. Corollary. Let a discrete group ' admit a proper cocompact ac-
tion on X. Then T' is non-amenable if and only if X satisfies the (linear
isoperimetric) inequality (§).
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This applies, in particular, to the universal covering X of a compact manifold

V with (V) =T.

0.5.B. Also in the fifties Efremovich [Ef] observed that the growth-rate of
the volume of the balls in the universal covering X of V, i.e.

Vol B(d) ford — oo,

depends only on the fundamental group I of V but not on the particular
choice of V. In fact he pointed out (now it looks totally obvious) that
Vol B(d) for d — oo grows essentially with the same rate as the correspond-
ing function Np(d) defined in 0.1,

Nr(d) = card Br(d)

for the balls Br(d) C T.

The ideas of the growth of balls, Folner sets and sets of conjugacy classes in
groups (especially in fundamental groups of manifolds of negative curvature,
see [Mar]; [Mar],) were quite popular in the sixties among ergodic theorists
in Moskow and Leningrad. (Much of these ideas I learned at the time from
A. Vershik, D. Kazhdan and G. Margulis.) Then the geometers took a part
in the story and related the growth to curvature. The first results here for
non-negative curvature are due to A. Svarc [Sv] Similar results were obtained
independently by J. Milnor (see [Mil]) who stated the following

0.5.B,;. Conjecture. The growth function Nr(d) of a finitely generated group
[ is either polynomial (i.e. N(d) < 1+ Cd" for some positive C' and n) or
ezxponential, which means

N(d) > A* forsome A > 1.

This conjecture is known to be true for linear groups (i.e. subgroups of GLy)
by the work of Tits who proved the following

0.5.B;. Freedom theorem (see [Tit];). Ewvery finitely generated linear
group I' is either virtually solvable (i.e. contains a solvable subgroup of finite
index) or contains a copy of Fa, the free group on two generators. This implies
the conjecture, for the groups I' O F, obviously have exponential growth;
furthermore, the virtually solvable groups I' have Nr(d) exponential unless
they are virtually nilpotent. The latter are known to have polynomial growth
and are, in fact, characterized by this property, see [Tit], and references
therein.
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0.5.B;. Milnor’s conjecture is still open for finitely presented groups but
recently Grigorchuk found a remarkable class of finitely generated infinitely
presented groups of intermediate growth where N(d) behaves as A%°, 0 <
a < 1. (Grigorchuk’s groups I' act on an infinite regular tree fixing a vertex
and therefore are residually finite without being linear. The essential feature
of ' responsible for the intermediate growth is the existence of mutually
isomorphic subgroups H C I" and H' is the Cartesian product I' x I' x I’ x
I'xTxT x T xT. See [Gri] for a comprehensive survey of the growth theory.)
The current version of the growth conjecture due to Grigorchuk reads

There exists a > 0 (possibly o = 1 — €) such that either Nr(d) grows faster
than A% or T has polynomial growth (and, hence, is virtually nilpotent).

0.5.B,. There is a simple link between growth and amenability.
If T is non-amenable then it has exponential growth.

This immediately follows by applying the (linear isoperimetric) inequality (*)
to the concentric balls B(d) C T.

Thus Grigorchuk’s examples provide a new class of amenable groups. Prior
to his work all known amenable groups were obtained from finite and Abelian
groups (which are easily seen to be amenable) by the following three opera-
tions.

1. Extensions: Here one uses the fact that if in the exact sequence 1 —
I't » T3 — T'3 = 1 the groups I'; and I'; are amenable, then so is I',.

2. Infinite unions: If T is a union of an increasing family of amenable
subgroups then T is amenable.

3. Taking subgroups and factor groups: Every subgroup of an amenable
group is amenable and so is every factor group.

Notice that in the course of such a construction one may have intermediate
groups infinitely generated even if the final result is f.g., as was pointed out,
1 believe, by H. Bass. Also recall that Grigorchuk’s groups are not finitely
presented and one has still no ways to produce finitely presented amenable
groups apart from 1, 2 and 3.

0.5.C. The main source of infinite groups in differential geometry is provided
by manifolds of non-positive sectional curvature, K < 0. One of the first
asymptotic results here is the following result by A. Avez (see [Av] and §6).

0.5.C,. Non-amenability theorem. Let V be a compact manifold without
boundary and K(V) < 0. Then the fundamental group of V is non-amenable
unless V is flat (and then 7 (V) is virtually Abelian).
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The proof suggested by Avez is based on the following

0.5.C;. Non-amenability criterion. Let X be an n-dimensional Riemann-
tan manifold which admits a vector field Z with the following two properties

(i) the length of Z is uniformly bounded

sup || Z(z)|| < oo,
zeX

(i) the divergence of Z is strictly positive,
xuel; divZ(z) > 0.
Then every bounded domain Q in X with ¢ smooth boundary satisfies
Vol,.) < const Vol,,_,010. (+)

Furthermore, the conclusion remains valid if we replace (ii) by the following
weaker condition (ii)o and additionally assume that X has locally bounded
geometry (see 0.5.A3).

(ii)o div Z(z) > 0 for all x € X and there exist positive numbers d and ¢
such that for every ball B C X of radius d the integrated divergence of
Z over B is at least ¢,

/div Z(z)dz > e.
B

Idea of the proof. Integrate div Z over 1 and apply Stokes’ theorem.

Avez applies this criterion to the gradients Z of horofunctions in the universal
covering X of V. Recall that a horofunction A : X — R is a limit of a
sequence of additively normalized distance functions h;(z) = dist(z, z;) — ¢;,
where z; € X is a sequence of points going to infinity and ¢; is a sequence of
constants. If K < 0 then horofunctions h (as well as distance functions) are
(known to be) convex and so divgrad h > 0. In general, the strict inequality

divgradh > e >0
needs strictly negative curvature,
K(X)<k<0,

but in the case where X covers a compact non-flat manifold V' Avez produces
a horofunction & whose gradient satisfies (ii)o.



